文件名称:基于语义位置和区域划分的兴趣点推荐模型
文件大小:1.54MB
文件格式:PDF
更新时间:2024-05-20 07:07:41
位置社交网络 语义位置 兴趣点推荐
针对现有的位置社交网络研究工作对兴趣点相关的用户语义位置信息挖掘不够充分,且大多推荐算法忽略了兴趣点所在区域对推荐结果的影响,提出了一种新型兴趣点推荐模型(USTTGD)。首先采用分割时间的潜在狄利克雷分配主题模型(latent Dirichlet allocation,LDA),基于签到记录中的语义位置信息挖掘时间主题下的用户时间偏好,然后将兴趣点所处区域划分为网格,以评估区域影响;接着应用边缘加权的个性化PageRank(edge-weighted personalized PageRank,EwPPR)来建模兴趣点之间的连续过渡;最后将用户时间偏好、区域偏好和连续过渡偏好融合为一个统一的推荐框架。通过在真实数据集上实验验证,与其他传统推荐模型相比,USTTGD模型在准确率和召回率上有了显著的提升。