文件名称:smote的matlab代码-lab-imbalanced-data:实验室不平衡数据
文件大小:165KB
文件格式:ZIP
更新时间:2024-07-09 00:55:31
系统开源
smote的matlab代码 实验室 | 不平衡的数据 我们将使用files_for_lab/customer_churn.csv数据集来构建流失预测器。 指示 加载数据集并探索变量。 我们将尝试使用变量tenure 、 SeniorCitizen 、 MonthlyCharges的逻辑回归来预测变量Churn 。 提取目标变量。 提取自变量并对其进行缩放。 构建逻辑回归模型。 评估模型。 即使是一个简单的模型也会给我们超过 70% 的准确率。 为什么? 合成少数过采样技术(SMOTE)是一种基于最近邻的过采样技术,它在现有点之间添加新点。 将imblearn.over_sampling.SMOTE应用于数据集。 构建和评估逻辑回归模型。 有什么改善吗? Tomek 链接是一对非常接近的实例,但属于相反的类。 删除每对多数类的实例会增加两个类之间的空间,从而促进分类过程。 将imblearn.under_sampling.TomekLinks应用于数据集。 构建和评估逻辑回归模型。 有什么改善吗?
【文件预览】:
lab-imbalanced-data-master
----files_for_lab()
--------customer_churn.csv(955KB)
----.github()
--------stale.yml(1KB)
----readme.md(1KB)