文件名称:GNMF_Multi.m
文件大小:7KB
文件格式:M
更新时间:2018-06-30 04:39:30
nmf graph
Hyperspectral unmixing is one of the most important techniques in analyzing hyperspectral images, which decomposes a mixed pixel into a collection of constituent materials weighted by their proportions. Recently, many sparse nonnegative matrix factorization (NMF) algorithms have achieved advanced performance for hyperspectral unmixing because they overcome the difficulty of absence of pure pixels and sufficiently utilize the sparse characteristic of the data. However, most existing sparse NMF algorithms for hyperspectral unmixing only consider the Euclidean structure of the hyperspectral data space. In fact, hyperspectral data are more likely to lie on a low-dimensional submanifold embedded in the high-dimensional ambient space.