论文研究-在线BCI高速数据流的可预测并发实时传输.pdf

时间:2022-08-11 13:34:25
【文件属性】:

文件名称:论文研究-在线BCI高速数据流的可预测并发实时传输.pdf

文件大小:1.4MB

文件格式:PDF

更新时间:2022-08-11 13:34:25

在线BCI,高速EEG数据流,并发,自适应单向模糊推理,生产—消费协同

基于多分类运动想象的在线BCI(brain computer interface,脑机接口)中,如何实时处理高速EEG(electroencephalogram,脑电)数据流是实现在线意识识别的难点,其关键是高速计算和复杂情况下的预测问题。以线程并发作为解决高速计算问题的切入点,首先将EEG信号分析任务分解为多个线程子任务,并通过缓冲区管理策略解决线程并发带来的协同问题,针对高速EEG数据流的复杂变化问题,采用自适应单向模糊推理的方法预测数据流伸缩变化,并针对线程并发造成的中间结果的错序问题,设计信号量互斥与同步方法对中间数据块进行顺序重组。针对多名受试者的大量实验显示,单次Trial平均延迟时间明显减少。因此,线程并发和模糊推理能够解决在线BCI系统的高速计算和预测问题,从而提高信息传输率。


网友评论