论文研究-极限学习机类不平衡数据学习算法研究.pdf

时间:2022-08-11 12:06:52
【文件属性】:

文件名称:论文研究-极限学习机类不平衡数据学习算法研究.pdf

文件大小:842KB

文件格式:PDF

更新时间:2022-08-11 12:06:52

极限学习机,类不平衡数据学习,支持向量机,AdaBoost

针对目前提出的Boosting提升的加权极限学习机算法用各类总分类性能作为算法的优化目标,算法对大类样本具有性能偏向性,而且没有考虑数据中包含噪声及噪点时算法对分类性能的影响,提出基于AdaBoost提升的WELM算法。该算法利用考虑各类样本分布不平衡特性的误差计算方式并对误差进行了sigmoid运算,提高了算法的对大类样本和小类样本的识别率及算法的抗噪声能力。通过在15个UCI不平衡数据集进行分析实验,实验结果表明提出的算法具有更好的分类性能。


网友评论