文件名称:论文研究-基于边聚类的多层社会网络社团发现算法.pdf
文件大小:1.33MB
文件格式:PDF
更新时间:2022-08-11 13:38:20
社会网络,多层社会网络,社团发现,跨层边差分聚类系数,模块度
针对目前多层社会网络(multi-layered social network,MSN)的社团发现算法较少、社团划分结果较粗糙等特点,提出了一种基于边聚类的多层社会网络社团发现(CLEDCC)算法。该算法综合考虑每层关系网中的任意两节点邻居及节点本身的关系强弱,并分别针对人造稀疏网、稠密网以及真实数据集进行仿真。实验表明,所提出的CLEDCC算法能有效地避免参数不确定性问题,并比跨层边聚类系数(CLECC)算法的社团划分结果更精准。