machine-learning-notes机器学习笔记

时间:2024-03-20 10:27:42
【文件属性】:

文件名称:machine-learning-notes机器学习笔记

文件大小:1002KB

文件格式:GZ

更新时间:2024-03-20 10:27:42

machine-learning

machine-learning-notes机器学习笔记


【文件预览】:
895.machine-learning-notes__hschen0712
----.gitignore(52B)
----Machine-Learning()
--------softmax-crossentropy-derivative.ipynb(7KB)
--------svd-ridge-regression.ipynb(7KB)
--------xgboost-notes()
--------implement-softmax-in-theano.ipynb(14KB)
--------svd1.ipynb(8KB)
----README.md(4KB)
----ML-Foundation()
--------lecture-1.ipynb(8KB)
----Deep-Learning()
--------theano-notes()
--------install-caffe-in-windows.ipynb(182KB)
--------keras-notes()
--------back-propagation-through-time.ipynb(15KB)
--------mxnet-notes()
--------rnn-numpy.ipynb(31KB)
--------back-propagation-in-matrix-form.ipynb(8KB)
--------singular-value-of-random-matrix.ipynb(54KB)
----NLP()
--------naive-bayes.ipynb(31KB)
--------latent-dirichlet-allocation-1.ipynb(17KB)
--------gensim-lda-tutorial.ipynb(74KB)
--------latent-dirichlet-allocation-2.ipynb(23KB)
----PRML()
--------Chap3-Linear-Models-For-Regression()
--------Chap1-Introduction()
--------Chap2-Probability-Distributions()
----Math()
--------Convex Optimization()
----CS229()
--------RL1.ipynb(7KB)
--------RL2.ipynb(13KB)
--------EM.ipynb(8KB)
--------GLM.ipynb(12KB)
----README.ipynb(6KB)
----YidaXu-ML()
--------exponential-family-variational-inference.ipynb(7KB)
--------sampling-methods-part1.ipynb(497KB)
--------EM-review.ipynb(6KB)
--------sampling-methods-part2.ipynb(15KB)
--------variational-inference-for-gaussian-distribution.ipynb(5KB)
--------variational-inference.ipynb(6KB)
--------exponential-family.ipynb(6KB)

网友评论