基于改进PSO_LSSVM机械结构疲劳裂纹扩展预测 (2013年)

时间:2024-05-18 18:50:32
【文件属性】:

文件名称:基于改进PSO_LSSVM机械结构疲劳裂纹扩展预测 (2013年)

文件大小:1.78MB

文件格式:PDF

更新时间:2024-05-18 18:50:32

工程技术 论文

机械结构在长期的存储中, 疲劳裂纹的变化受到多种环境因素的影响, 针对目前疲劳裂纹预测准确率低的问题, 提出一种基于最小二乘支持向量机方法(LSSVM)来预测机械结构的疲劳裂纹长度, 通过改进的粒子群优化算法对LSSVM进行参数优化。改进的粒子群参数优化算法采用二次型惯性权重递减策略, 使粒子群优化算法的优化过程更接近实际的非线性和高复杂过程。经仿真实验验证, 结果表明, 基于改进的粒子群参数优化的最小二乘支持向量机(PSO_LSSVM)对于机械结构的疲劳裂纹长度预测优于传统方法, 收敛速度快, 预测准确


网友评论