文件名称:论文研究-基于ACO-LSSVM的网络流量预测.pdf
文件大小:619KB
文件格式:PDF
更新时间:2022-09-30 23:29:32
论文研究
为了提高了网络流量的预测精度,提出一种蚁群算法(ACO)优化最小二乘支持向量机(LSSVM)参数的网络流量预测算法(ACO-LSSVM)。将LSSVM算法参数作为蚂蚁的位置向量,采用动态随机抽取的方法来确定目标个体引导蚁群进行全局搜索,并在最优蚂蚁邻域内进行小步长局部搜索,找到算法的最优参数,建立了基于ACO-LSSVM的网络流量预测模型。仿真结果表明,相对其他网络流量预测算法,ACO-LSSVM算法提高了网络流量预测精度,更能准确地描述网络流量变化规律。