文件名称:论文研究-BEMD-分层水平集侧扫声纳图像快速分割算法.pdf
文件大小:536KB
文件格式:PDF
更新时间:2022-09-30 05:01:24
论文研究
针对侧扫声纳图像不同区域的像素分布特点,提出了一种改进的BEMD(二维经验模态分解)-分层水平集分割算法。介绍了CV(Chan和Vese)水平集模型和分层水平集模型,利用分层水平集模型进行三类分割。为了提高分割精度,利用BEMD重新描述模型的能量函数。通过BEMD的加权参数,在不影响分割精度的前提下提高模型的抗噪性能。分析了c-均值算法与水平集算法的联系,利用改进的c-均值算法初始化水平集演化曲线,以减少迭代次数。对水平集能量函数添加惩罚项,以提高水平集演化速度。利用改进的BEMD-分层水平集分割算法进行无监督的图像分割实验并与其他算法比较,验证了该算法的抗噪性、分割的准确性和快速性。