文件名称:论文研究-基于局部特征和语义信息的扣件图像检测.pdf
文件大小:1.09MB
文件格式:PDF
更新时间:2022-08-11 13:17:08
铁路扣件检测,非线性空间,局部特征,扣件子图,视觉单词,语义信息
针对现有底层特征识别扣件状态的算法存在描述能力差、错误率高等问题,提出一种基于扣件局部特征和语义信息的扣件检测模型。首先,在图像的非线性空间中计算扣件底层局部特征来表达扣件轮廓信息;然后,将图像分为四个子图,有效克服了由于扣件左右对称、上下相似造成的单词多义性问题;再根据扣件子图构造视觉单词,由底层特征整合得到语义信息向量;最后,以该向量训练分类器,判断待检扣件状态。对均衡的扣件样本进行测试,漏检率仅为0.67%。实验表明所提算法较现有方法,漏检率和误报率明显降低,检测能力增强。