文件名称:基于节点从属度的加权网络重叠社区划分算法
文件大小:1.23MB
文件格式:PDF
更新时间:2024-05-20 09:00:19
复杂网络 加权网络 节点从属度
针对传统社区划分算法忽略现实世界网络特征导致社区划分准确率低的问题,提出了一种基于节点从属度的加权网络重叠社区划分算法。该算法提出加权网络模型,通过模型得到了能刻画出真实网络结构的加权网络;通过网络拓扑结构定义了核心社区,核心社区对社区划分的准确性有着重要作用。该算法计算节点与核心社区间的从属度,并与从属度阈值进行比较进行核心社区扩展,根据扩展模块度优化思想,通过不断地调整从属度阈值直到获得最优的社区结构,完成重叠社区划分。在人工网络数据集和真实世界网络数据集上与已有算法进行实验对比,实验结果验证了所提算法能够准确、有效地检测出重叠社区。