文件名称:论文研究-基于粗糙集约简的图像插值方法.pdf
文件大小:1.05MB
文件格式:PDF
更新时间:2022-08-11 14:51:25
图像插值,粗糙集,约简,支持向量机
提出了一种基于粗糙集约简的支持向量机图像插值方法,目的在于提高基于学习的插值方法的插值效率,改善放大图像边缘模糊现象。首先在原始图像上利用已知的像素灰度值及邻域内像素间的相关性构造训练样本集;然后利用粗糙集约简算法约简掉其中重要度较小的特征,并用约简后的样本集训练支持向量机;再用测试样本及训练好的支持向量机估计偶行偶列的像素灰度值;最后利用测试样本及训练好的支持向量机估计剩余的未知像素灰度值。仿真表明,所提方法有效提高了插值效率,获得了较好的客观指标,得到了满意的插值图像。