Cost-sensitive Support Vector Machines

时间:2022-02-21 04:29:01
【文件属性】:

文件名称:Cost-sensitive Support Vector Machines

文件大小:1.34MB

文件格式:PDF

更新时间:2022-02-21 04:29:01

SVM 机器学习 支持向量机

代价敏感支持向量机 A new procedure for learning cost-sensitive SVM(CS-SVM) classifiers is proposed. The SVM hinge loss is extended to the cost sensitive setting, and the CS-SVM is derived as the minimizer of the associated risk. The extension of the hinge loss draws on recent connections between risk minimization and probability elicitation. These connections are generalized to cost-sensitive classification, in a manner that guarantees consistency with the cost- sensitive Bayes risk, and associated Bayes decision rule. This ensures that optimal decision rules, under the new hinge loss, implement the Bayes-optimal cost-sensitive classification boundary. Minimization of the new hinge loss is shown to be a generalization of the classic SVM optimization problem, and can be solved by identical procedures. The dual problem of CS-SVM is carefully scrutinized by means of regularization theory and sensitivity analysis and the CS-SVM algorithm is substantiated. The proposed algorithm is also extended to cost-sensitive learning with example dependent costs. The minimum cost sensitive risk is proposed as the performance measure and is connected to ROC analysis through vector optimization. The resulting algorithm avoids the shortcomings of previous approaches to cost-sensitive SVM design, and is shown to have superior experimental performance on a large number of cost sensitive and imbalanced datasets.


网友评论