云识别引擎流程——kmeans树应用-介绍 AR AR云识别内容

时间:2024-05-16 04:58:00
【文件属性】:

文件名称:云识别引擎流程——kmeans树应用-介绍 AR AR云识别内容

文件大小:1.93MB

文件格式:PPT

更新时间:2024-05-16 04:58:00

AR 云识别

4、云识别引擎流程——kmeans树应用 聚类分析(英语:Cluster analysis,亦称为群集分析)是对于统计数据分析的一门技术,在许多领域受到广泛应用,包括机器学习,数据挖掘,模式识别,图像分析以及生物信息。聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集(subset),这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离等。 kmeans的计算方法如下: 1 随机选取k个中心点 2 遍历所有数据,将每个数据划分到最近的中心点中 3 计算每个聚类的平均值,并作为新的中心点 4 重复2-3,直到这k个中线点不再变化(收敛了),或执行了足够多的迭代 时间复杂度:O(I*n*k*m) 空间复杂度:O(n*m) 其中m为每个元素字段个数,n为数据量,I为跌打个数。一般I,k,m均可认为是常量,所以时间和空间复杂度可以简化为O(n),即线性的。


网友评论