文件名称:rasa_ch_faq:用 rasa 实现 rasa faq 机器人
文件大小:74KB
文件格式:ZIP
更新时间:2024-05-03 12:31:57
Python
rasa_ch_faq 用 RASA 实现 RASA FAQ。 回答关于 RASA 的问题。 欢迎大家多提 RASA 相关的问题,我会补充在这里。 功能更新 [2021-04-13] 实现追问demo,。 支持的问题列表 请参见: 一些配置 分词使用的 bert, 自定义了 如何运行 由于使用了 bert_chinese, 所以 需要下载 bert_chinese 模型。 并放到 pre_models 文件夹中,重命名为 tf_model.h5 命令执行: curl -L https://mirror.tuna.tsinghua.edu.cn/hugging-face-models/bert-base-chinese-tf_model.h5 -o pre_models/tf_model.h5 rasa train 运行示例 普通 FAQ: 追问: 一些文件说明 run.py # 相当于运
【文件预览】:
rasa_ch_faq-main
----run_action_server.py(157B)
----train.py(105B)
----pre_models()
--------config.json(624B)
--------vocab.txt(107KB)
----endpoints.yml(1KB)
----credentials.yml(980B)
----run.py(110B)
----requirements.txt(77B)
----config.yml(1KB)
----actions()
--------__init__.py(0B)
--------actions.py(3KB)
----README.md(1KB)
----back_translation.py(1KB)
----piplines()
--------__init__.py(0B)
--------ask_again_policy.py(7KB)
--------README.md(1KB)
--------tokenizers.py(1009B)
----data()
--------nlu()
--------storiea()
--------rules()
----tests()
--------test_stories.yml(2KB)
----.gitignore(165B)
----domain.yml(873B)