文件名称:论文研究-不确定NNSB-OPTICS聚类算法在滑坡危险性预测中的研究与应用.pdf
文件大小:955KB
文件格式:PDF
更新时间:2022-08-11 15:56:03
滑坡,危险性预测,不确定数据,OPTICS算法
针对滑坡危险性预测中降雨等不确定因素不能有效刻画及处理和现有的OPTICS-PLUS聚类算法需要设置密度阈值、时间复杂度高等问题进行了研究,为了提高滑坡危险性预测准确率,提出一种不确定NNSB-OPTICS聚类算法并应用于滑坡预测中。首先对OPTICS-PLUS算法扩张策略进行优化,避免了人工设置密度阈值,提高了算法效率;然后根据降雨量数据的分布特征,综合EW型距离公式和云模型理论,提出EC型距离公式,有效处理不确定数据降雨量;最后将不确定NNSB-OPTICS聚类算法应用于延安市宝塔区滑坡危险性预测中,建立滑坡危险性预测模型,滑坡预测精度达到89.7%。实验结果表明,该方法能够有效提高滑坡危险性预测精度,具有较高的可行性。