文件名称:论文研究-求解TSP问题的改进模拟退火遗传算法.pdf
文件大小:831KB
文件格式:PDF
更新时间:2022-10-03 04:58:53
论文研究
巡回旅行商问题(TSP)是最典型的NP的难题,遗传算法(GA)是解决这类问题的有效方法之一。由于该问题的解是一种特殊的序列,一般的交叉算子在该问题的求解效果方面并不理想,提出了贪心的3PM交叉算子,同时又引入退火选择方法,形成一种新的模拟退火遗传算法GCBSAGA(Greed Cross-3PM Based on Simulated Annealing Genetic Algorithms)。该算法还将模拟退火算法与遗传算法相结合,使得遗传算法在前期发挥着全局搜索的强大功能,很容易收敛到全局较优解;后期用模拟退火算法来处理遗传算法前期的全局较优解,充分利用模拟退火算法后期局部搜索的强大功能,最终收敛到全局最优解。经过国际公认的TSPLIB提供的实验数据的验证,GCBSAGA在实例eil76、eil101、pr144、st70均找到了比TSPLIB提供的最优路径更优的解。