论文研究-基于蜂群[k]-means算法的遥感图像聚类应用研究.pdf

时间:2022-10-01 17:58:11
【文件属性】:

文件名称:论文研究-基于蜂群[k]-means算法的遥感图像聚类应用研究.pdf

文件大小:1.06MB

文件格式:PDF

更新时间:2022-10-01 17:58:11

论文研究

在遥感领域,获取用于训练的标记数据耗费巨大且困难,因此许多非监督技术逐渐被发展和应用于标记样本有限的遥感图像。将[k]均值和蜂群算法相结合,提出一种新的非监督聚类算法。使用灰度共生矩阵和小波变换提取遥感图像特征,对特征数据集进行蜂群[k]-means聚类。整个聚类过程首先使用最大最小距离积邻域均值法产生初始聚类中心,将蜂群算法和[k]-means算法交替执行,实现遥感图像的聚类。通过UCI数据集和凉水*自然保护区的遥感数据的实验结果表明,该算法具有较高的聚类准确率,满足遥感图像聚类的应用需求。


网友评论