基于GWO-Elman神经网络的底板突水预测-论文

时间:2024-07-27 09:17:04
【文件属性】:

文件名称:基于GWO-Elman神经网络的底板突水预测-论文

文件大小:3.78MB

文件格式:PDF

更新时间:2024-07-27 09:17:04

底板突水 灰狼优化算法 Elman神经网络 熵值法 华北型煤田

我国是世界最大的煤炭生产国和消费国,特别是在我国的华北地区,煤炭储量非常丰富,但由于华北地区的水文地质条件复杂,煤炭实际生产过程中事故频发,特别是煤层底板突水事故,一旦发生往往会造成较为严重的人员伤亡和财产损失。因此煤层底板突水预测已经成为煤矿安全生产领域研究的重点。巨野煤田红旗煤矿是典型的华北型煤田,其主要可采煤层3煤层平均厚度5.48 m,实际生产过程中受底板突水威胁严重,在矿井的建设及生产过程中多次出现底板突水。为了对3煤层进行底板突水预测,在分析收集红旗煤矿相关矿井水文地质资料的基础上,选取断裂分维值、取心率、隔水层厚度、单位涌水量、渗透系数、底板含水层总厚度、承压含水层水压共7个因素,作为进行底板突水预测的主要影响因素;以现场实际数据为输入样本,通过灰狼优化算法(Grey Wolf Optimizer,GWO)得到Elman神经网络优化的最佳权重和阈值,分别为18.7482和0.014435,之后建立相应的GWO-Elman神经网络底板突水预测模型;在此基础上通过测试样本输入模型验证,结果准确率达到100%,再用熵值法确定权重的脆弱性指数法进行对比,证明神经网络模型准确度更高


网友评论