文件名称:论文研究-基于FSG的最大频繁子图挖掘算法.pdf
文件大小:334KB
文件格式:PDF
更新时间:2022-08-11 16:39:31
数据挖掘,规范编码,最大频繁子图,决策树,子图同构
图挖掘已成为数据挖掘领域研究的热点,然而挖掘全部频繁子图很困难且得到的频繁子图过多,影响结果的理解和应用。可通过挖掘最大频繁子图来解决挖掘结果数量巨大的问题,最大频繁子图挖掘得到的结果数量很少且不丢失信息,节省了空间和以后的分析工作。基于算法FSG提出了最大频繁子图挖掘算法FSG-MaxGraph;结合节点的度、标记及邻接列表来计算规范编码,提出两个定理来减少子图同构判断的次数,并应用改进后的决策树来计算支持度。实验证明,新算法解决了挖掘结果太多理解困难的问题,且提高了挖掘效率。