论文研究-新型飞蛾火焰优化算法的研究.pdf

时间:2022-10-03 02:08:01
【文件属性】:

文件名称:论文研究-新型飞蛾火焰优化算法的研究.pdf

文件大小:604KB

文件格式:PDF

更新时间:2022-10-03 02:08:01

论文研究

飞蛾火焰优化算法(Moth-Flame Optimization,MFO)是一种自然激励且易于实现的全局优化算法,在许多实际优化任务中表现出良好的性能。然而,MFO算法存在早熟收敛和容易陷入局部最优解的问题,针对这些不足,提出了一种Kent混沌动态惯性权值的改善飞蛾火焰优化算法(Ameliorative MFO,AMFO)。在AMFO算法中,引入Kent混沌映射搜索策略帮助当前最优解跳出局部最优;采用基于适应度值和迭代次数的动态惯性权值策略来平衡算法的开发和探索能力,以进一步提升MFO算法性能。在8个经典benchmark函数上验证AMFO算法的搜索精度和性能,并将其结果与标准飞蛾火焰优化算法、粒子群算法和差分进化算法进行比较,仿真结果表明AMFO算法具有较好的搜索性能。


网友评论