文件名称:基于二次加权Mean-Shift的目标实时跟踪
文件大小:1.67MB
文件格式:PDF
更新时间:2024-05-08 03:32:03
目标跟踪 Mean-Shift 核密度估计
针对经典Mean-Shift跟踪算法需要多次迭代才能达到收敛的缺点,提出一种高效的Mean-Shift跟踪算法。在使用颜色空间作为目标特征的跟踪系统中,目标本身往往可以表征为区别于背景的颜色特征,而颜色特征的分布则与偏移向量的权值相对应。通过分析跟踪算法中不同的权值对收敛速度的影响,对加权系数进行了二次加权,使改进的算法只需要一次粗定位和一次精确定位2次迭代便可准确地对目标进行定位。试验结果表明,该算法在保证了经典算法准确性的同时,大大加快了向目标收敛的速度。