文件名称:基于评论与评分的协同过滤算法 (2017年)
文件大小:1.53MB
文件格式:PDF
更新时间:2024-06-11 22:44:46
工程技术 论文
针对传统协同过滤算法中存在的数据稀疏性问题,结合用户评分及用户评论信息的特点,提出了基于评论与评分的user-based协同过滤算法和基于评论与评分的item-based协同过滤算法。该算法利用主题模型产生评论主题分布,利用评分数据生成评论态度影响因子,并通过评论态度影响因子来放大评论主题分布中的突出特征,建立更为准确的用户偏好与物品特征,进而进行评分预测与物品推荐。实验结果表明,该算法在稀疏数据集上可以获得较好的推荐效果,提高了推荐质量。