文件名称:论文研究-基于小样本集弱学习规则的KNN分类算法.pdf
文件大小:276KB
文件格式:PDF
更新时间:2022-08-11 13:04:05
机器学习,K-最近邻分类,小样本集,标签数据,弱学习规则
KNN及其改进算法使用类标号已知的数据集Dl对类标号未知的数据集Du进行类别标志,如果Dl中的数据数量过少,将会影响最后的分类精度。基于小样本弱学习规则的KNN分类算法旨在提高基于小样本集的KNN算法的分类精度,它首先对Dl中的数据对象进行学习,从中选取一些数据,利用学到的标签知识对其进行类别标号,然后将其加入到Dl中;最后利用扩展后的Dl对Du中的数据对象进行类别标志。通过使用标准数据集的测试发现,该算法能够提高KNN的分类精度,取得了较满意的结果。