spark-2.2.2安装流程

时间:2022-05-26 08:17:22
【文件属性】:

文件名称:spark-2.2.2安装流程

文件大小:6KB

文件格式:TXT

更新时间:2022-05-26 08:17:22

spark安

ClusterManager:在Standalone模式中即为Master(主节点),控制整个集群,监控Worker。在YARN模式中为资源管理器。 Worker:从节点,负责控制计算节点,启动Executor。在YARN模式中为NodeManager,负责计算节点的控制。 Driver:运行Application的main()函数并创建SparkContext。 Executor:执行器,在worker node上执行任务的组件、用于启动线程池运行任务。每个Application拥有独立的一组Executors。 SparkContext:整个应用的上下文,控制应用的生命周期。 RDD:Spark的基本计算单元,一组RDD可形成执行的有向无环图RDD Graph。 DAG Scheduler:实现将Spark作业分解成一到多个Stage,每个Stage根据RDD的Partition个数决定Task的个数,然后生成相应的Task set放到TaskScheduler中。 TaskScheduler:将任务(Task)分发给Executor执行。 Stage:一个Spark作业一般包含一到多个Stage。 Task:一个Stage包含一到多个Task,通过多个Task实现并行运行的功能。 Transformations:转换(Transformations) (如:map, filter, groupBy, join等),Transformations操作是Lazy的,也就是说从一个RDD转换生成另一个RDD的操作不是马上执行,Spark在遇到Transformations操作时只会记录需要这样的操作,并不会去执行,需要等到有Actions操作的时候才会真正启动计算过程进行计算。 Actions:操作(Actions) (如:count, collect, save等),Actions操作会返回结果或把RDD数据写到存储系统中。Actions是触发Spark启动计算的动因。 SparkEnv:线程级别的上下文,存储运行时的重要组件的引用。 SparkEnv内创建并包含如下一些重要组件的引用。 MapOutPutTracker:负责Shuffle元信息的存储。 BroadcastManager:负责广播变量的控制与元信息的存储。 BlockManager:负责存储管理、创建和查找块。 MetricsSystem:监控运行时性能指标信息。 SparkConf:负责存储配置信息。


网友评论