文件名称:论文研究-基于孪生卷积神经网络的人脸追踪.pdf
文件大小:842KB
文件格式:PDF
更新时间:2022-10-01 04:58:47
论文研究
由于光照、遮挡、尺度变化等原因,在真实多变场景下完成人脸追踪面临挑战。探究了基于卷积神经网络(CNN)的人脸追踪,将基本的卷积神经网络改进为孪生神经网络,在OTB数据集上采用端到端的方式,以成对图像区域作为输入,输出两者距离,通过距离评估图像区域相似性;加入边框回归算法(bounding box regression)微调追踪结果。实验结果表明,改进后的神经网络优于传统的卷积神经网络,能达到更好的人脸追踪效果。