文件名称:基于粒计算的粗糙集聚类算法 (2013年)
文件大小:833KB
文件格式:PDF
更新时间:2024-06-12 08:57:54
工程技术 论文
针对传统K-means聚类算法初始聚类中心随机选取、不能处理边界对象、效率低、聚类精度低等问题, 提出了一种新的K-means聚类算法。算法引入粒计算理论, 并依据密度和最大最小距离法选择初始聚类中心, 避免初始聚类中心在同一个类中, 结合粗糙集, 通过动态调整上近似集和边界集的权重因子, 以解决边界数据的聚类问题; 最后采用类间距和类内距均衡化准则函数作为算法终止判断条件, 来得到更好的聚类效果。实验结果表明:该算法具有较高的准确率, 迭代次数较少, 并降低了对噪声的敏感程度。