文件名称:【GNN综述_2020_9】Graph Neural Networks: Methods, Applications...
文件大小:1.09MB
文件格式:PDF
更新时间:2024-09-20 15:21:20
图神经网络 网络表示 图表示学习 图神经网络综述
Graph Neural Networks: Methods, Applications, and Opportunities 在过去十年左右的时间里,我们见证了深度学习重振机器学习领域。它以最先进的性能解决了计算机视觉、语音识别、自然语言处理和各种其他任务领域的许多问题。数据通常在这些域中的欧几里得空间中表示。各种其他域符合非欧几里得空间,图是其中的理想表示。图适用于表示各种实体之间的依赖关系和相互关系。传统上,图形的手工特征无法从这种复杂的数据表示中为各种任务提供必要的推理。最近,出现了利用深度学习中的各种进步来绘制基于数据的任务的趋势。本文对每个学习设置中的图神经网络 (GNN) 进行了全面调查:监督学习、无监督学习、半监督学习和自监督学习。每个基于图的学习设置的分类都提供了属于给定学习设置的方法的逻辑划分。从理论和经验的角度分析每个学习任务的方法。此外,我们提供了构建 GNN 的通用架构指南。还提供了各种应用程序和基准数据集,以及仍然困扰 GNN 普遍适用性的开放挑战。