融合时序相关性的课堂异常行为识别

时间:2024-05-26 06:04:50
【文件属性】:

文件名称:融合时序相关性的课堂异常行为识别

文件大小:1.56MB

文件格式:PDF

更新时间:2024-05-26 06:04:50

DBN网络 HOG特征 时序相关性 二级递推 异常行为

针对人体行为最重要的motion特征,提出了基于时间上下文的二级递推异常行为识别方法.不同于传统深度学习的训练方法,本文方法不是直接从图像数据中学习特征,而是把提取的形状信息HOG特征作为训练输入.首先提取基于HOG算法的图像形状特征,采用提取到的特征训练DBN网络.其次利用已经训练好的DBN网络和Softmax分类器识别出人体粗目标区,然后根据粗目标区域的时序上下文信息,计算质心加速度.最后判断加速度的阈值,识别出异常行为的精目标区.本文将粗细目标结合的二级递推方法应用到课堂行为识别中,通过实验结果表明,该方法在运动模糊和目标密集遮挡的场景下都能较好地识别出课堂行为,识别率相比其他方法有较大提升.课堂异常行为数据分析,可在课堂动态管理和学习效果评估等方面发挥辅助作用.


网友评论