文件名称:CTR:CTR模型代码和学习笔记总结
文件大小:30.21MB
文件格式:ZIP
更新时间:2024-04-09 22:15:18
afm tensorflow frappe recommendation-algorithms fm
CTR学习笔记 运行:python main.py --model DeepFM-步进火车-数据集普查--clear_model 1 要求:张量流1.15 已完成模型列表[支持数据集] FM [普查] 实况调查团[人口普查] 嵌入+ MLP [普查] 广泛[深度] FNN [普查] PNN [普查] DeepFM [普查和调查] 原子力显微镜[人口普查和frappe] NFM [普查和调查] 深交[人口普查] 深入与交叉[普查与调查] xDeepFM [人口普查和frappe] FiBiNET [人口普查和frappe] DIN [亚马逊] 数据集当前支持人口普查,frappe数据集,详情见数据目录,训练参数和预处理与数据集绑定 参考论文列表 [GBDT + LR]预测Facebook广告点击的实用经验 [FM] S. Rendle,分解机 [FM模型]使用分解机的快速上下
【文件预览】:
CTR-master
----.gitignore(183B)
----README.md(3KB)
----config.py(2KB)
----const()
--------frappe_const.py(93B)
--------amazon_const.py(731B)
--------census_const.py(2KB)
--------__init__.py(731B)
----model()
--------FNN()
--------PNN()
--------DCN()
--------AFM()
--------xDeepFM()
--------DeepCrossing()
--------FFM()
--------EMMLP()
--------FM()
--------FiBiNET()
--------DIEN()
--------DeepFM()
--------NFM()
--------wide_and_deep()
--------DIN()
----utils.py(6KB)
----main.py(3KB)
----__init__.py(0B)
----paper()
--------[xDeepFM]xDeepFM- Combining Explicit and Implicit Feature Interactions for Recommender Systems.pdf(1.44MB)
--------[AutoInt]- Automatic Feature Interaction Learning via Self-Attentive Neural Networks.pdf(1.52MB)
--------[PNN] Product-based Neural Networks for User Response Prediction (SJTU 2016).pdf(470KB)
--------[FFM]Field-aware Factorization Machines for CTR Prediction.pdf(361KB)
--------[DIN]Deep Interest Network for Click-Through Rate Prediction.pdf(8.13MB)
--------[AFM] Attentional Factorization Machines - Learning the Weight of Feature Interactions via Attention Networks (ZJU 2017).pdf(3.39MB)
--------[FM Method]Factorization Machines.pdf(187KB)
--------[AFM]Attentional Factorization Machines- Learning the Weight of Feature Interactions via Attention Networks∗.pdf(987KB)
--------[NCF] Neural Collaborative Filtering (NUS 2017).pdf(1.42MB)
--------[Wide&Deep] Wide & Deep Learning for Recommender Systems (Google 2016).pdf(480KB)
--------[Deep&Cross]Deep & Cross Network for Ad Click Predictions.pdf(232KB)
--------[Deep Crossing] Deep Crossing - Web-Scale Modeling without Manually Crafted Combinatorial Features (Microsoft 2016).pdf(434KB)
--------[NFM]Neural Factorization Machines for Sparse Predictive Analytics.pdf(3.49MB)
--------[DeepFM]DeepFM- A Factorization-Machine based Neural Network for CTR Prediction.pdf(1.14MB)
--------[FNN] Deep Learning over Multi-field Categorical Data (UCL 2016).pdf(566KB)
--------[GBDT+LR]Practical Lessons from Predicting Clicks on Ads at Facebook.pdf(774KB)
--------[DIEN]Deep Interest Evolution Network for Click-Through Rate Prediction.pdf(2.07MB)
--------[FiBiNET]- Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction.pdf(939KB)
--------[FM Model] Fast Context-aware Recommendations with Factorization Machines (UKON 2011).pdf(291KB)
----playground()
--------Embedding()
--------feature_columnn()
----layers.py(2KB)
----data()
--------amazon()
--------movie_len()
--------frappe()
--------ali_ccp()
--------census()