基于标签相似度的不良信息多标签分类方法

时间:2022-08-11 11:34:52
【文件属性】:

文件名称:基于标签相似度的不良信息多标签分类方法

文件大小:1012KB

文件格式:PDF

更新时间:2022-08-11 11:34:52

多标签分类,标签之间的相关关系,不良信息,中心标签,标签相似度系数矩阵

在多标记分类中,标签与标签之间的相关关系是影响分类效果的一个重要因子。传统的经典多标签分类方法如BR算法、ML-KNN算法等,忽略了标签之间的相关关系对实际分类的影响,分类效果一直不能令人满意;面对类别关联度极高的不良信息的多标签分类,分类效果更是大打折扣。针对上述问题,通过改进经典的多标签分类算法RAkEL,首先根据训练文本计算出各标签之间的相似度系数,然后再根据自定义不良信息层次关系计算出综合标签相似度系数矩阵,最后在RAkEL算法投票过程中根据综合标签相似度与中心标签重新确定最终的结果标签集合。与传统的分类方法在真实的语料库上进行多标签分类效果对比,结果证明,该方法对不良信息分类具有较好的效果。


网友评论