leaves:来自流行框架的GBRT(梯度增强回归树)模型的预测部分的纯Go实现

时间:2024-06-02 00:54:27
【文件属性】:

文件名称:leaves:来自流行框架的GBRT(梯度增强回归树)模型的预测部分的纯Go实现

文件大小:661KB

文件格式:ZIP

更新时间:2024-06-02 00:54:27

go golang machine-learning xgboost lightgbm

树叶 介绍 leaves是在纯Go语言中为GBRT(梯度增强回归树)模型实现预测代码的库。 该项目的目标是-可以在不使用C API绑定的情况下在Go程序中使用流行的GBRT框架中的模型。 注意: 1.0.0版本之前,API可能会发生变化。 特征 一般特征: 支持批次的并行预测 支持sigmoid,softmax转换功能 支持获取决策树的叶子索引 支持LightGBM( )型号: 从text格式和JSON格式读取模型 支持gbdt , rf (随机森林)和dart模型 支持多类预测 分类功能的附加优化(例如,一项热门决策规则) 仅利用预测用法的附加优化 支持XGBoost( )模型: 从二进制格式读取模型 支持gbtree , gblinear , dart模型 支持多类预测 支持缺失值( nan ) 支持scikit-learn( )树模型(实验支持): 从pickle


【文件预览】:
leaves-master
----.travis.yml(152B)
----testdata()
--------lg_dart_breast_cancer.json(94KB)
--------kddcup99_test.tsv(66KB)
--------xgdermatology_true_predictions.txt(16KB)
--------lgmulticlass_true_raw_predictions.txt(49KB)
--------tree_2leaves.txt(144B)
--------xg_dart_agaricus.model(18KB)
--------agaricus_test.libsvm(179KB)
--------iris.py(782B)
--------lgmulticlass.model(127KB)
--------iris_lightgbm_rf.py(847B)
--------breast_cancer_test.tsv(42KB)
--------sk_gradient_boosting_classifier.model(84KB)
--------densemat.libsvm(37B)
--------dermatology_test.libsvm(6KB)
--------lg_dart_breast_cancer.model(20KB)
--------iris_test.libsvm(750B)
--------sk_gradient_boosting_classifier_test.libsvm(212KB)
--------xgagaricus_true_predictions.txt(39KB)
--------lg_kddcup99.model(319KB)
--------xgdermatology.model(14KB)
--------lgmulticlass_true_predictions.txt(49KB)
--------xgblin_agaricus.model(831B)
--------lg_rf_iris.model(10KB)
--------xgagaricus.model(1KB)
--------tree_1leaf.txt(194B)
--------xgblin_agaricus_true_predictions.txt(39KB)
--------lg_1tree.json(1KB)
--------sk_gradient_boosting_classifier_true_predictions.txt(12KB)
--------xg_dart_agaricus_true_predictions.txt(40KB)
--------lg_breast_cancer_data.txt(12KB)
--------model_simple.txt(3KB)
--------lg_kddcup99.py(3KB)
--------xgblin_agaricus_true_raw_predictions.txt(40KB)
--------lg_dart_breast_cancer.py(801B)
--------lg_breast_cancer.txt(100KB)
--------lg_rf_iris_true_predictions.txt(750B)
--------csrmat.libsvm(33B)
--------lg_kddcup99_true_predictions.txt(166KB)
--------sk_iris_true_predictions.txt(2KB)
--------lg_breast_cancer_data_pred_leaves.txt(6KB)
--------tree_3leaves.txt(208B)
--------README.md(10KB)
--------lg_1tree_1leaf.json(321B)
--------sk_iris.model(126KB)
--------multiclass_test.tsv(90KB)
--------lg_dart_breast_cancer_true_predictions.txt(1KB)
----compatibility.md(654B)
----benchmark()
--------lg.py(2KB)
--------all.sh(1KB)
--------xg.py(2KB)
----leaves_test.go(28KB)
----lgtree.go(3KB)
----mat()
--------mat_test.go(3KB)
--------mat.go(2KB)
--------mat_io.go(8KB)
----lgensemble.go(3KB)
----skensemble_io.go(6KB)
----internal()
--------pickle()
--------xgbin()
----doc.go(6KB)
----xgblinear_io.go(2KB)
----xgensemble_io.go(8KB)
----lgensemble_test.go(10KB)
----xgblinear.go(1KB)
----transformation()
--------leaf_index.go(661B)
--------transformation.go(993B)
--------raw.go(474B)
--------softmax.go(683B)
--------logistic.go(635B)
----NOTES.md(1KB)
----LICENSE.md(1KB)
----logo.png(59KB)
----xgensemble.go(2KB)
----misc.go(174B)
----testscripts()
--------compatibility_cases.py(6KB)
--------compatibility_test.py(3KB)
--------doctest.py(8KB)
--------util.py(747B)
--------compatibility_test.sh(89B)
--------compatibility_core.py(11KB)
----README.md(6KB)
----util()
--------util_test.go(5KB)
--------util.go(7KB)
----leaves.go(9KB)
----go.mod(44B)
----lgensemble_io.go(20KB)

网友评论