文件名称:论文研究-基于TVS-MHAR模型金融市场高频多元波动率的预测.pdf
文件大小:1.07MB
文件格式:PDF
更新时间:2022-10-10 14:53:44
论文研究
论文研究-基于TVS-MHAR模型金融市场高频多元波动率的预测.pdf, 本文基于Kalli和Griffin(2011)的时变稀疏模型和多元HAR模型,构建了具有时变稀疏性的多元HAR模型(TVS-MHAR),并利用中国上证综指、沪深300期货和国债期货的五分钟高频数据,对金融市场的已实现波动率矩阵进行预测.本文通过Cholesky转换方法保证预测波动率矩阵的正定性.通过对不同多元波动率模型的预测结果进行数值比较和经济比较,本文发现,本文构建的TVS-MHAR模型无论对于短期预测、中期预测还是长期预测都具有最高的预测精度和最大的投资改善.同时,时变多元波动率模型可以获得比固定参数模型更好的预测效果,高频数据模型比低频数据模型获得更大的投资改善.