matlab代码sqrt-Machine-learning-assisted-graph-classification:机器学习辅助图分类

时间:2024-06-12 15:49:56
【文件属性】:

文件名称:matlab代码sqrt-Machine-learning-assisted-graph-classification:机器学习辅助图分类

文件大小:50KB

文件格式:ZIP

更新时间:2024-06-12 15:49:56

系统开源

Matlab代码sqrt 机器学习辅助图分类 资料产生 文件“ initial_phases.txt”包含用于生成网络初始相位值的MATLAB代码。 这些值均匀地分布在-pi和pi之间,并可根据需要更改为在-val和val之间变化。 文件“ network_generation.py”包含Python 3代码以生成以下内容: 网络:此处可以生成两种类型的网络:ER随机和无标度。 networkx函数erdos_renyi_graph()采用网络大小(N),连接两个节点的概率(N / k)和种子值来随机化图的生成。 每个图的种子值必须不同,以确保每个图都是唯一的。 函数Barabasi_Albert_graph()接受网络大小(N),将每个新节点连接到图(k / 2)所要建立的连接数(该图由称为优先连接的算法形成)和种子价值观。 同样,每个图的种子值必须唯一。 此处生成的Ω值来自函数randn(),该函数接受参数N(要生成的值的数量),然后生成平均值为0和方差为1的N个值。其他一些值,必须使用以下公式: 值= sqrt(方差)* randn()+平均值 最后,文件“ data_gener


【文件预览】:
Machine-learning-assisted-graph-classification-master
----data()
--------example_ER_adjacency_matrix.txt(1.19MB)
--------gaussian_frequency_values.txt(12KB)
--------initial_phase_values.txt(18KB)
--------example_SF_adjacency_matrix.txt(1.19MB)
----README.md(4KB)
----data_generation()
--------initial_phases.m(327B)
--------network_generation.py(1KB)
--------watts_Strogatz_network.m(1KB)
--------data_generation_code.m(2KB)
----order_parameter_vs_lambda.m(807B)
----training_and_testing()
--------training_testing_model.py(8KB)

网友评论