文件名称:论文研究-Mixed KPCA结合纹理特征的SVM盐碱土信息提取.pdf
文件大小:610KB
文件格式:PDF
更新时间:2022-10-03 05:52:55
论文研究
核函数是核主成分分析(Kernel Principal Component Analysis,KPCA)的核心,目前使用的核函数都是单一核函数。尝试通过将光谱角径向基核函数(Spectral Angle Radial Basis Function,SA-RBF)与RBF组合形成混合核函数。在研究中,利用基于该混合核函数的KPCA进行特征提取,将其光谱特征波段和纹理特征相结合用于盐碱土的SVM分类,将分类结果与其他SVM分类进行比较,结果表明:该方法优于其他SVM方法,能有效提取玛纳斯河流域绿洲区的盐碱土专题信息,分类精度是89.000%,kappa系数是0.876。