文件名称:结合对象分割的运动行人检测
文件大小:1.11MB
文件格式:PDF
更新时间:2024-05-26 06:24:16
行人检测 光流 视频对象分割 深度学习 半自动数据集标注
目标检测大量应用于监控系统的行人检测以及人脸识别,是当前深度学习的研究热点.监督学习利用人工标注大量数据集训练出针对特定场景的行人检测器.但是人工标注方法费时费力,本文针对监督学习需要人工标注数据集的缺点,研究了一种半自动标注行人的方法.针对静止的单目摄像机拍摄的监控视频,利用光流信息提供的初始前景可能性,以及跨越时间的视觉相似性来迭代地更新初始的前景可能性,分割出运动的行人,根据分割的前景对象,提出了一种半自动标注行人的方法.实验结果显示,本文的方法可以为行人检测系统提供大量数据集,且效率上明显优于传统人工标注的方法.