文件名称:论文研究-一种基于双聚类的缺失数据填补方法.pdf
文件大小:1.42MB
文件格式:PDF
更新时间:2022-08-11 13:33:27
缺失数据填补,双聚类,双聚类数据填补,数据清洗
针对现实数据集的数据缺失问题,提出了一种基于双聚类的缺失数据填补新方法。该算法利用双聚类簇内平均平方残值越小簇内数据相似性越高的这一特性,将缺失数据的填补问题转换为求解特定双聚类簇最小平均平方残值的问题,进而实现了数据集中缺失元素的预测;再利用二次函数求解极小值的思想对包含有缺失数据的特定双聚类簇最小平均平方残值的问题进行求解,并进行了数学上的分析证明。最后进行仿真验证,通过观察UCI数据集的实验结果可知,提出的算法具有较高的填补准确性。