论文研究-基于GPU的PSO-BP神经网络DOA估计.pdf

时间:2022-08-11 14:37:24
【文件属性】:

文件名称:论文研究-基于GPU的PSO-BP神经网络DOA估计.pdf

文件大小:947KB

文件格式:PDF

更新时间:2022-08-11 14:37:24

波达方向估计,粒子群优化,神经网络,图形处理单元,统一计算设备架构

粒子群优化(PSO)算法与误差反向传播(BP)算法相结合训练神经网络(PSO-BP-NN),可以有效提高网络的泛化能力,但是面临的最大问题就是计算时间过长。为此,提出了基于图形处理单元(GPU)的并行加速解决方案,并基于该方法对波达方向(DOA)估计问题进行了建模。在算法执行过程中,利用粒子群神经网络(PSO-NN)粒子行为的可并行性和误差反向传播神经网络(BP-NN)样本训练的可并行性来减少神经网络(NN)的训练时间。在统一计算设备架构(CUDA)下对DOA估计进行了NN建模。数值计算结果表明,相对于CPU端串行PSO-BP-NN,GPU端并行PSO-BP-NN在收敛稳定性一致的前提下取得了65倍的计算加速比。


网友评论