文件名称:论文研究-基于直觉模糊遗传的武器—目标分配问题优化.pdf
文件大小:1.03MB
文件格式:PDF
更新时间:2022-08-11 17:41:30
武器—目标分配,直觉模糊集,模拟退火Meta-Lamarckian学习,自适应变异,遗传算法
针对求解武器—目标分配(weapon-target assignment,WTA)问题的传统算法容易早熟和收敛较慢的缺点,提出一种直觉模糊遗传算法,采用模拟退火的Meta-Lamarckian学习策略和自适应变异,提高了求解WTA问题的效益和速度。首先考虑了WTA问题的各种约束条件,以剩余目标威胁最小和攻击伤害值最大为目标,建立了数学模型,定义了目标函数和约束函数的隶属度和非隶属度函数,通过“最小—最大”算子构建了直觉模糊WTA问题模型,并设计了模拟退火的Meta-Lamarckian学习策略和自适应变异,增强算法的局部寻优能力和后期收敛速度。通过算例仿真并与GA、PSO等算法比较分析,验证了该方法的有效性。