图卷积神经网络中的池化综述.pdf

时间:2023-04-29 13:06:39
【文件属性】:

文件名称:图卷积神经网络中的池化综述.pdf

文件大小:323KB

文件格式:PDF

更新时间:2023-04-29 13:06:39

图卷积神经网络(GCNNs)是深度学习技术在图结构数据问题上的一种强大的扩展。我们对GCNNs的几种池方法进行了实证评估,并将这些图池化方法与三种不同架构(GCN、TAGCN和GraphSAGE)进行了组合。我们证实,图池化,特别是DiffPool,提高了流行的图分类数据集的分类精度,并发现,平均而言,TAGCN达到了可比或更好的精度比GCN和GraphSAGE,特别是对数据集较大和稀疏的图结构。


网友评论