文件名称:论文研究-非负矩阵分解在遥感图像融合中的应用.pdf
文件大小:885KB
文件格式:PDF
更新时间:2022-09-26 17:25:15
论文研究
非负矩阵分解(Non-negative Matrix Factorization,NMF)算法是在矩阵中所有元素均为非负数的条件下的一种矩阵分解方法,这为矩阵分解提供了一种新的思路。非负矩阵分解方法在图像处理领域具有十分重要的应用意义。介绍了非负矩阵分解的基本思想,讨论了非负矩阵分解用于图像融合的可能性,并实现了基于非负矩阵分解的遥感SAR图像与SPOT图像的融合,NMF能通过观测图像数据找到图像的基矩阵,发现图像的特征,从而最终获得融合图像。不仅对基于NMF的融合方法进行了实验,而且对基于NMF的融合方法和基于小波的融合方法作了对比,并从主观和客观上来评价了这两种融合图像的质量。实验结果表明基于NMF的融合图像与原始的SAR图和基于小波的融合图像相比,能提供更多的信息,更适合作为实时定位的基准图。