基于深度学习算法的卫星影像变化监测

时间:2024-05-26 06:08:59
【文件属性】:

文件名称:基于深度学习算法的卫星影像变化监测

文件大小:1.72MB

文件格式:PDF

更新时间:2024-05-26 06:08:59

遥感影像 变化检测 深度学习 去噪增强 卷积神经网络

遥感影像的变化检测是遥感应用研究的热点之一,在城市变化、环境监测、土地利用以及基础地理数据库更新等领域中有着广泛的应用.变化检测是从不同时期的遥感数据中定量分析和确定地表变化的特征和过程,具体工作是对同一地区不同时相的两幅或多幅图像进行分析,检测出其中的变化部分与未变化部分.本文提出了基于堆栈降噪自动编码器网络的变化检测方法,将应用于SAR (Synthetic Aperture Radar,合成孔径雷达)卫星图像变化检测的深度学习算法改进,使之适用于高分光学卫星图像,然后在孪生网络的结构上进行改进,提出了基于分支卷积神经网络的变化检测方法,最后设计算法去除了阴影干扰和噪声等伪变化,并在高分二号卫星中宁夏地区的实际生产数据影像上进行了测试,取得了不错的效果.


网友评论