文件名称:Deep Learning Based Communication Over the Air
文件大小:876KB
文件格式:PDF
更新时间:2021-06-01 07:04:47
deep learning
Abstract—End-to-end learning of communications systems is a fascinating novel concept that has so far only been validated by simulations for block-based transmissions. It allows learning of transmitter and receiver implementations as deep neural networks (NNs) that are optimized for an arbitrary differentiable end-to-end performancemetric, e.g., block error rate (BLER).In this paper, we demonstrate that over-the-air transmissions are possible:We build, train, and run a complete communications system solely composed of NNs using unsynchronized off-the-shelf software-defined radios and open-source deep learning software libraries.We extend the existing ideas toward continuous data transmission, which eases their current restriction to short block lengths but also entails the issue of receiver synchronization. We overcome this problem by introducing a frame synchronizationmodule based on another NN. A comparison of the BLER performance of the “learned” system with that of a practical baseline shows competitive performance close to 1 dB, even without extensive hyperparameter tuning. We identify several practical challenges of training such a system over actual channels, in particular, the missing channel gradient, and propose a two-step learning procedure based on the idea of transfer learning that circumvents this issue.