论文研究-基于深度学习的短时交通流预测.pdf

时间:2022-08-11 14:07:15
【文件属性】:

文件名称:论文研究-基于深度学习的短时交通流预测.pdf

文件大小:1.09MB

文件格式:PDF

更新时间:2022-08-11 14:07:15

交通流预测,深度学习,短时交通流,支持向量回归

针对现有预测方法未能充分揭示交通流内部的本质规律,提出了一种基于深度学习的短时交通流预测方法。该方法结合深度信念网路模型(DBN)与支持向量回归分类器(SVR)作为预测模型,利用差分去除交通流数据的趋势向,用深度信念网络模型进行交通流特征学习,在网络顶层连接支持向量回归模型进行流量预测。实际交通流数据测试结果表明,提出的预测模型与传统预测模型相比具有更高的预测精度,预测性能提高了18.01%,是一种有效的交通流预测方法。


网友评论