文件名称:Anomaly-Detection:无监督和半监督异常检测隔离森林内核PCA检测ADOA等
文件大小:7.28MB
文件格式:ZIP
更新时间:2024-05-30 01:46:01
data-mining pca-analysis pca semi-supervised-learning principal-component-analysis
Anomaly-Detection Author: MaXiao E-Mail: 备注: 若文档无法正常显示图片,请参考右方链接: 第一部分:无监督异常检测 (Unsupervised Detection) 1. 算法 1.1 Isolation Forest 算法论文: 算法解析: 算法应用: 1.2 基于PCA的异常检测 方法1:基于样本的重构误差 算法论文: 算法解析: 算法实现 基于KernelPCA重构误差的异常检测: 基于LinearPCA重构误差的异常检测: 只调用Numpy实现LinearPCA异常检测: 不调用scikit-learn,只调用Numpy,通过矩阵的奇异值分解(SVD)实现PCA,再进行异常检测 返回结果与recon_error_pca.py完全一致 方法2:基于样本在Major/Minor主成分上的偏差 算法论文: 算法解析: Chapter 2:基于样本