文件名称:Generating Domain-Specific Lexicons and Sentiment Analysis
文件大小:288KB
文件格式:PDF
更新时间:2020-08-14 15:56:38
Sentiment Analysis
The sentiment captured in opinionated text provides interesting and valuable information for social media services. However, due to the complexity and diversity of linguistic representations, it is challenging to build a framework that accurately extracts such sentiment. We propose a semi-supervised framework for generating a domain-specific sentiment lexicon and inferring sentiments at the segment level. Our framework can greatly reduce the human effort for building a domainspecific sentiment lexicon with high quality. Specifically, in our evaluation, working with just 20 manually labeled reviews, it generates a domain-specific sentiment lexicon that yields weighted average FMeasure gains of 3%. Our sentiment classification model achieves approximately 1% greater accuracy than a state-of-the-art approach based on elementary discourse units.