文件名称:ist的matlab代码-Machine-Learning-Algorithms-in-Python:用Python实现的流行和不流行的机器学
文件大小:18.31MB
文件格式:ZIP
更新时间:2024-06-15 02:09:19
系统开源
ist的matlab代码Python机器学习算法 用Python实现的流行和不流行的机器学习和数据处理算法参考:Sergios Theodoridis的“机器学习:贝叶斯优化观点” 除非脚本中另有说明,否则大多数算法都是由我自己根据参考文献中的理论从头开始实现的。 对于每种算法,将有一个笔记本测试文档和一个干净的python脚本。 该存储库中实现的算法包括: 1. Adaboost 2. Adaptive Projected Subgradient Method (APSM) 3. Convolutional Neural Network (CNN) 4. Compressed Sensing Matching Pursuit (CSMP) 5. Decision tree 6. Fuzzy C Means 7. Hierarchical and DBSCAN Clustering 8. Iterative Shrinkage/Thresholding (IST) algorithms 9. Kernal PCA 10. K-means family 11. KNN 12. Linea
【文件预览】:
Machine-Learning-Algorithms-in-Python-master
----Sentiment Analysis Using RNN.ipynb(26KB)
----KNN.ipynb(26KB)
----K-means.py(3KB)
----Iterative shringkage-thresholding (IST) algorithms.ipynb(20KB)
----LDA.py(2KB)
----SVM.py(3KB)
----Naive Bayes.ipynb(26KB)
----wdbc.data(121KB)
----K-meansPP.py(3KB)
----wine.data(11KB)
----tree.gif(0B)
----Perceptron.py(8KB)
----CNN using TensorFlow Layers API.ipynb(12KB)
----CSMP.py(3KB)
----Data Preprocessing.ipynb(116KB)
----Multilayer ANN from Scratch P2.ipynb(792B)
----PEGASOS.py(3KB)
----Model Evaluation and Hyperparameter Tuning.ipynb(69KB)
----AdaptiveProjectedSubgradientMethod_APSM.ipynb(17KB)
----Decision_tree.py(6KB)
----housing.data(48KB)
----Compressed sensing matching pursuit (CSMP) algorithms.ipynb(21KB)
----NaiveBayes.png(32KB)
----Fuzzy_C_Means.py(3KB)
----Decision Tree.ipynb(69KB)
----Adaboost_from_scratch.py(6KB)
----movie_data_preprocessed.csv(55.01MB)
----KernelPCA.ipynb(57KB)
----K-means Family.ipynb(80KB)
---- Multilayer ANN from Scratch P1.ipynb(21KB)
----Orthogonal Matching Pursuit (OMP).ipynb(4KB)
----LinearRegressionGD.py(2KB)
----README(332B)
----KNN.py(2KB)
----SBS.py(2KB)
----NLP--Sentiment Analysis (Part 2).ipynb(91KB)
----tree.png(181KB)
----Adaboost_from_scratch.ipynb(47KB)
----Decision_Tree_myown.ipynb(30KB)
----Hierarchical and DBSCAN Clustering.ipynb(101KB)
----.gitignore(101B)
----A Tour of Machine Learning Classifiers Using Scikit-learn.ipynb(58KB)
----Adaboost.ipynb(60KB)
----NLP--Sentiment Analysis_Part1.ipynb(26KB)
----SVM.ipynb(6KB)
----CNN.ipynb(21KB)
----LogistcRegression.py(2KB)
----LogistcRegression.ipynb(45KB)
----Linear Regression.ipynb(1.61MB)
----README.md(1KB)
----OMP.py(2KB)
----IST.py(2KB)
----PCA.ipynb(48KB)
----NaiveBayes.py(2KB)
----PCA.py(2KB)
----iris.data(4KB)
----PEGASOS.ipynb(18KB)