文件名称:AIR-QUALITY-PREDICTION:近年来,空气污染急剧增加,并且对所有生物造成的影响更糟。 世界上大多数国家都在与日益增加的空气污染水平作斗争。 因此,控制和预测空气质量指数已成为必要。 在此研究项目中,我们将实施数据挖掘和机器学习模型来预测AQI并将AQI归类。 对于AQI预测,我们已经实现了五个回归模型主成分,偏最小二乘法,留一维CV的主成分,留一维CV的偏最小二乘,多个印度城市的多元回归AQI数据。 根据AQI的值,AQI指数进一步分为6个不同的类别,即“好,满意,中,差,非常差和严重”
文件大小:11KB
文件格式:ZIP
更新时间:2024-05-10 14:41:01
R
空气质量预测 近年来,空气污染急剧增加,并且对所有生物造成的影响更糟。 世界上大多数国家都在与日益增加的空气污染水平作斗争。 因此,控制和预测空气质量指数已成为必要。 在此研究项目中,我们将实施数据挖掘和机器学习模型来预测AQI并将AQI归类。 对于AQI预测,我们已经实现了五个回归模型主成分,偏最小二乘法,留一维CV的主成分,留一维CV的偏最小二乘,多个印度城市的多元回归AQI数据。 根据AQI的值,AQI指数进一步分为6个不同的类别,即“好,满意,中,差,非常差和严重”。 为了预测AQI桶,我们使用重复CV分类算法开发了三种分类模型,分别是多项式Logistic回归和K最近邻和K最近邻。 来自印度不同城市的空气质量数据集,具有留一法交叉验证的PLS模型。
【文件预览】:
AIR-QUALITY-PREDICTION-master
----Code_Files()
--------DATASET2()
--------DATASET1()
--------DATASET3()
----README.md(1KB)