文件名称:基于深度时空卷积神经网络的人群异常行为检测和定位
文件大小:745KB
文件格式:PDF
更新时间:2022-04-26 10:24:30
论文
针对公共场合人群异常行为检测准确率不高和训练样本缺乏的问题,提出一种基于深度时空卷积神经网络 的人群异常行为检测和定位的方法。首先针对监控视频中人群行为的特点,综合利用静态图像的空间特征和前后帧 的时间特征,将二维卷积扩展到三维空间,设计面向人群异常行为检测和定位的深度时空卷积神经网络;为了定位 人群异常行为,将视频分成若干子区域,获取视频的子区域时空数据样本,然后将数据样本输入设计的深度时空卷 积神经网络进行训练和分类,实现人群异常行为的检测与定位。同时,为了解决深度时空卷积神经网络训练时样本 数量不足的问题,设计一种迁移学习的方法,利用样本数量多的数据集预训练网络,然后在待测试的数据集中进行 微调和优化网络模型。